GM Service Manual Online
For 1990-2009 cars only

The air temperature controls are divided into five areas:

    • HVAC Control Components
    • Heating and A/C Operation
    • Auxiliary Heating and A/C Operation
    • Engine Coolant
    • A/C Cycle

HVAC Control Components

HVAC Control Module

The HVAC control module is a class 2 device that interfaces between the operator and the HVAC system to maintain air temperature and distribution settings. The battery positive voltage circuit provides power that the control module uses for keep alive memory (KAM). If the battery positive voltage circuit loses power, all HVAC DTCs and settings will be erased from KAM. The body control module (BCM), which is the vehicle mode master, provides a device on signal. The control module supports the following features:

Feature

Availability

Afterblow

No

Purge

No

Personalization

No

Actuator Calibration

Yes

Auxiliary HVAC Control Processor

The auxiliary HVAC control processor controls all outputs for the auxiliary HVAC system. It receives inputs from the front and rear auxiliary HVAC control assemblies. The processor positions the auxiliary air temperature actuator and auxiliary mode actuator based on these inputs. This processor does not have class 2 communication available.

The auxiliary HVAC control processor receives power from the ignition 3 voltage circuit. Ground is provided by the ground circuit through rear auxiliary HVAC control assembly and a splice pack. The system receives 12-volt varied voltage input for auxiliary air temperature change request. Then the processor creates a 12-volt varied output for control of the auxiliary air temperature actuator. When the voltage signal is low a cool air request is made and the voltage signal is high a warm air request is made.

Front Auxiliary HVAC Control Assembly

The front auxiliary HVAC control assembly provides inputs to the auxiliary HVAC control processor. It is located in the overhead console so that front seat occupants can control auxiliary HVAC operation. This assembly provides blower, air delivery mode, air temperature settings and control of which control unit will operate the auxiliary HVAC system. When the AUX position is selected, inputs from this control assembly will not be processed by the auxiliary HVAC control processor. This system does not have class 2 communication available.

The front auxiliary HVAC control assembly receives power from the ignition 3 voltage circuit. The front HVAC control assembly will apply a ground to the rear auxiliary enable control circuit when AUX is selected. When the air temperature knob is rotated a variable resistor internal to the assembly will vary a 12-volt input. The 12-volt varied voltage is supplied to the auxiliary HVAC control processor for an auxiliary air temperature actuator position change request. This is done on the auxiliary air temperature door position signal circuit . When the voltage signal is low a cool air request is made and the voltage signal is high a warm air request is made.

Rear Auxiliary HVAC Control Assembly

The rear auxiliary HVAC control assembly provides inputs to the auxiliary HVAC control processor. It is located in the rear headliner so that second row seat occupants can control auxiliary HVAC operation. This assembly provides blower, air delivery mode and air temperature settings. When the AUX position is selected, on the front HVAC control assembly, inputs from this control assembly will be processed by the auxiliary HVAC control processor. This system does not have class 2 communication available.

The rear auxiliary HVAC control assembly receives power from the ignition 3 voltage circuit. The front HVAC control assembly will apply a ground to the rear auxiliary enable control circuit when AUX is selected. When the air temperature knob is rotated a variable resistor internal to the assembly will vary a 12-volt input. The 12-volt varied voltage is supplied to the auxiliary HVAC control processor for an auxiliary air temperature actuator position change request. This is done on the auxiliary air temperature door position signal circuit . When the voltage signal is low a cool air request is made and the voltage signal is high a warm air request is made.

Air Temperature Actuator

The air temperature actuators are a 5-wire bi-directional electric motor that incorporates a feedback potentiometer. Ignition 3 voltage, low reference, control, 5-volt reference and position signal circuits enable the actuator to operate. The control circuit uses either a 0, 2.5 or 5-volt signal to command the actuator movement. When the actuator is at rest, the control circuit value is 2.5 volts. A 0 or 5-volt control signal commands the actuator movement in opposite directions. When the actuator shaft rotates, the potentiometers adjustable contact changes the door position signal between 0-5 volts.

The HVAC control module uses a range of 0-255 counts to index the actuator position. The door position signal voltage is converted to a 0-255 count range. When the module sets a commanded, or targeted, value, the control signal is changed to either 0 or 5 volts depending upon the direction that the actuator needs to rotate to reach the commanded value. As the actuator shaft rotates the changing position signal is sent to the module. Once the position signal and the commanded value are the same, the module changes the control signal to 2.5 volts.

Auxiliary Air Temperature Actuator

The auxiliary air temperature actuator is a 3-wire bi-directional electric motor. Ignition 3 voltage, ground and control circuits enable the actuator to operate. The control circuit uses a 0-12 volt linear-ramped signal to command the actuator movement. The 0 and 12-volt control values represent the opposite limits of the actuator range of motion. The values in between 0 and 12  volts correspond to the positions between the limits.

When the auxiliary HVAC control processor sets a commanded, or targeted, value, the control signal is set to a value between 0-12 volts. The actuator shaft rotates until the commanded position is reached. The module will maintain the control value until a new commanded value is needed.

A/C Refrigerant Pressure Sensor

The A/C refrigerant pressure sensor is a 3-wire piezoelectric pressure transducer. A 5-volt reference, low reference, and signal circuits enable the sensor to operate. The A/C pressure signal can be between 0-5 volts. When the A/C refrigerant pressure is low, the signal value is near 0 volts. When the A/C refrigerant pressure is high, the signal value is near 5 volts. The powertrain control module (PCM) converts the voltage signal to a pressure value.

The A/C refrigerant pressure sensor protects the A/C system from operating when an excessively high pressure condition exists. The PCM disables the compressor clutch if the A/C pressure is more than 2957 kPa (429 psi). The clutch will be enabled after the pressure decreases to less than 1578 kPa (229 psi).

A/C Low Pressure Switch

The A/C low pressure switch protects the A/C system from a low pressure condition that could damage the A/C compressor or cause evaporator icing. The HVAC control module applies 5 volts to the A/C low pressure switch signal circuit. The switch will open when the A/C low side pressure reaches 138-172 kPa (20-25 psi). This prevents the A/C compressor from operating. The switch will then close when A/C low pressure side reaches 275-317 kPa (40-46 psi). This enables the A/C compressor to turn back ON.

The low pressure switch uses refrigerant pressure to open and close a set of electrical contacts. When A/C request is authorized the switch is closed and shows normal status. During this state the switch will show 0 volts on the A/C low pressure sensor signal circuit. When A/C request is denied due to a low pressure condition the switch will be open. During this state the switch will show 5 volts on the A/C low pressure sensor signal circuit.

Heating and A/C Operation

The purpose of the heating and A/C system is to provide heated and cooled air to the interior of the vehicle. The A/C system will also remove humidity from the interior and reduce windshield fogging. Regardless of the temperature setting, the following can effect the rate that the HVAC system can achieve the desired temperature:

    • Recirculation actuator setting
    • Difference between inside and desired temperature
    • Difference between ambient and desired temperature
    • Blower motor speed setting
    • Mode setting
    • Auxiliary HVAC settings

The manual HVAC system is a dual temperature zone system. There are two separate air temperature levers. Moving the air temperature levers to the upward position diverts most of the airflow through the heater core, which increases the outlet air temperature. Moving the air temperature levers to the most downward position diverts most of the airflow around the heater core, which decreases the outlet air temperature. . The air temperature offset can be as much as 16.7°C (30°F).

Pressing the A/C button enables the HVAC control module to request A/C compressor engagement and turn on the A/C button LED. The HVAC control module sends a class 2 message to the powertrain control module (PCM) for A/C compressor engagement. The PCM will provide a ground for the A/C compressor relay enabling it to close its internal contacts to send battery voltage to the A/C compressor clutch coil. The A/C compressor diode will prevent a voltage spike, resulting from the collapse of the magnetic field of the coil, from entering the vehicle electrical system when the compressor is disengaged. Defrost and Defog mode selections will request A/C operation but not turn on the A/C LED.

The following conditions must be met in order for the A/C compressor clutch to turn on:

    • Ambient air temperature above 4°C (40°F)
    • A/C low pressure switch signal circuit is grounded
    • A/C refrigerant pressure sensor parameter is less than 2957 kPa (429 psi)
    • PCM receives an A/C request from the HVAC control module
    • Engine coolant temperature (ECT) is less than 121°C (250°F)
    • The engine RPM is more than 550 RPM
    • The throttle position is less than 100%

The HVAC control module monitors the A/C low pressure switch signal circuit. If the voltage signal on this circuit has no voltage drop the module will interpret this condition as a low pressure, disabling the A/C request. The A/C low pressure switch will open its internal contacts at 151 kPa (22 psi). Then close the contacts at 275 kPa (40 psi) to resume A/C operation. This switch assists in cycling the A/C compressor and prevents A/C compressor operation if system has a low refrigerant level.

The PCM monitors the A/C refrigerant pressure sensor signal circuit. The voltage signal on this circuit is proportional to the refrigerant pressure inside the A/C high side pressure line. As the pressure inside the line increases, so does the voltage signal. If the pressure is above 2957 kPa (429 psi), the A/C compressor output is disabled. When the pressure lowers to 1578 kPa (229 psi), the PCM enables the compressor to operate.

The sensor information is used by the PCM to determine the following:

    • The A/C high side pressure
    • An A/C system load on the engine
    • An excessive A/C high side pressure
    • The heat load at the A/C condenser

Once engaged, the compressor clutch will be disengaged for the following conditions:

    • Ambient air temperature is less than 4°C (40°F)
    • Throttle position is 100%
    • The A/C low pressure switch is open
    • A/C high side pressure is more than 2957 kPa (429 psi)
    • A/C low side pressure is less than 151 kPa (22 psi)
    • Engine coolant temperature (ECT) is more than 121°C (250°F)
    • Engine speed is more than 5500 RPM
    • Transmission shift
    • PCM detects excessive torque load
    • PCM detects insufficient idle quality
    • PCM detects a hard launch condition

Auxiliary Heating and A/C Operation

There are two separate control assemblies for the auxiliary HVAC system. There is the front auxiliary HVAC control assembly and the rear auxiliary HVAC control assembly. Both control assemblies provide input to the auxiliary HVAC control processor. If the front auxiliary HVAC control assembly is in any other position than OFF or AUX, the auxiliary HVAC control processor will only use inputs from the front HVAC controls. If the front auxiliary HVAC control assembly is in the AUX position, then the system will only function with inputs from the rear auxiliary HVAC control assembly. If the front auxiliary HVAC control assembly is in the OFF position, then the auxiliary HVAC control processor does not respond to input from either control assembly. The auxiliary HVAC control processor can not request A/C compressor clutch engagement from the powertrain control module (PCM).

The auxiliary air temperature switch is a rotary knob switch. Turning the air temperature switch to the warmest position diverts most of the airflow through the heater core, which increases the outlet air temperature. Turning the air temperature switch to the coolest position diverts most of the airflow around the heater core, which decreases the outlet air temperature.

Engine Coolant

Engine coolant is the essential element of the heating system. The thermostat controls the normal engine operating coolant temperature. The thermostat also creates a restriction for the cooling system that promotes a positive coolant flow and helps prevent cavitation.

Coolant enters the heater core through the inlet heater hose, in a pressurized state. The heater core is located inside the HVAC module. The ambient air drawn through the HVAC module absorbs the heat of the coolant flowing through the heater core. Heated air is distributed to the passenger compartment, through the HVAC module, for passenger comfort. Opening or closing the air temperature door controls the amount of heat delivered to the passenger compartment. The coolant exits the heater core through the return heater hose and recirculated back through the engine cooling system.

A/C Cycle

Refrigerant is the key element in an air conditioning system. R-134a is presently the only EPA approved refrigerant for automotive use. R-134a is an very low temperature gas that can transfer the undesirable heat and moisture from the passenger compartment to the outside air.

The A/C compressor is belt driven and operates when the magnetic clutch is engaged. The compressor builds pressure on the vapor refrigerant. Compressing the refrigerant also adds heat to the refrigerant. The refrigerant is discharged from the compressor, through the discharge hose, and forced to flow to the condenser and then through the balance of the A/C system. The A/C system is mechanically protected with the use of a high pressure relief valve. If the A/C refrigerant pressure sensor were to fail or if the refrigerant system becomes restricted and refrigerant pressure continued to rise, the high pressure relief will pop open and release refrigerant from the system.

Compressed refrigerant enters the condenser in a high temperature, high pressure vapor state. As the refrigerant flows through the condenser, the heat of the refrigerant is transferred to the ambient air passing through the condenser. Cooling the refrigerant causes the refrigerant to condense and change from a vapor to a liquid state.

The condenser is located in front of the radiator for maximum heat transfer. The condenser is made of aluminum tubing and aluminum cooling fins, which allows rapid heat transfer for the refrigerant. The semi-cooled liquid refrigerant exits the condenser and flows through the liquid line, to the orifice tube.

The orifice tube is located in the liquid line between the condenser and the evaporator. The orifice tube is the dividing point for the high and the low pressure sides of the A/C system. As the refrigerant passes through the orifice tube, the pressure on the refrigerant is lowered. Due to the pressure differential on the liquid refrigerant, the refrigerant will begin to vaporize at the orifice tube. The orifice tube also meters the amount of liquid refrigerant that can flow into the evaporator.

Refrigerant exiting the orifice tube flows into the evaporator core in a low pressure, liquid state. Ambient air is drawn through the HVAC module and passes through the evaporator core. Warm and moist air will cause the liquid refrigerant boil inside of the evaporator core. The boiling refrigerant absorbs heat from the ambient air and draws moisture onto the evaporator. The refrigerant exits the evaporator through the suction line and back to the compressor, in a vapor state, and completing the A/C cycle of heat removal. At the compressor, the refrigerant is compressed again and the cycle of heat removal is repeated.

The conditioned air is distributed through the HVAC module for passenger comfort. The heat and moisture removed from the passenger compartment will also change form, or condense, and is discharged from the HVAC module as water.

A/C Cycle with Auxiliary

The auxiliary A/C system operates from the vehicles primary A/C system. The front or primary A/C system must be ON to allow the rear A/C system to function.

Refrigerant is the key element in an air conditioning system. R-134a is presently the only EPA approved refrigerant for automotive use. R-134a is an very low temperature gas that can transfer the undesirable heat and moisture from the passenger compartment to the outside air.

The A/C system used on this vehicle is a non cycling system. Non cycling A/C systems use a high pressure switch to protect the A/C system from excessive pressure. The high pressure switch will OPEN the electrical signal, to the compressor clutch, in the event that the refrigerant pressure becomes excessive. After the high and low side of the A/C system pressure equalize, the high pressure switch will CLOSE. Closing the high pressure switch will complete the electrical circuit to the compressor clutch. The A/C system is also mechanically protected with the use of a high pressure relief valve. If the high pressure switch were to fail or if the refrigerant system becomes restricted and refrigerant pressure continued to rise, the high pressure relief will pop open and release refrigerant from the system.

The A/C compressor is belt driven and operates when the magnetic clutch is engaged. The compressor builds pressure on the vapor refrigerant. Compressing the refrigerant also adds heat to the refrigerant. The refrigerant is discharged from the compressor, through the discharge hose, and forced to flow to the condenser and then through the balance of the A/C system.

Compressed refrigerant enters the condenser in a high temperature, high pressure vapor state. As the refrigerant flows through the condenser, the heat of the refrigerant is transferred to the ambient air passing through the condenser. Cooling the refrigerant causes the refrigerant to condense and change from a vapor to a liquid state.

The condenser is located in front of the radiator for maximum heat transfer. The condenser is made of aluminum tubing and aluminum cooling fins, which allows rapid heat transfer for the refrigerant. The semi-cooled liquid refrigerant exits the condenser and flows through the liquid line. The liquid line flow is split and the liquid refrigerant flows to both the front or primary A/C system, and to the liquid line for the rear A/C system.

The liquid refrigerant, flowing to the rear A/C system, flows into the rear TXV. The rear TXV is located at the rear evaporator inlet. The TXV is the dividing point for the high and the low pressure sides of the rear A/C system. As the refrigerant passes through the TXV, the pressure on the refrigerant is lowered. Due to the pressure differential on the liquid refrigerant, the refrigerant will begin to boil at the expansion device. The TXV also meters the amount of liquid refrigerant that can flow into the evaporator.

Refrigerant exiting the TXV flows into the evaporator core in a low pressure, liquid state. Ambient air is drawn through the rear A/C module and passes through the evaporator core. Warm and moist air will cause the liquid refrigerant boil inside of the evaporator core. The boiling refrigerant absorbs heat from the ambient air and draws moisture onto the evaporator. The refrigerant exits the evaporator through the suction line and back to the primary A/C systems suction line. Refrigerant in the primary A/C system suction line flows back to the compressor, in a vapor state, and completes the A/C cycle of heat removal. At the compressor, the refrigerant is compressed again and the cycle of heat removal is repeated.

The conditioned air is distributed through the rear A/C module for passenger comfort. The heat and moisture removed from the rear passenger compartment will also change form, or condense, and is discharged from the rear A/C module as water.